24 research outputs found

    On the Efficacy of Live DDoS Detection with Hadoop

    Full text link
    Distributed Denial of Service flooding attacks are one of the biggest challenges to the availability of online services today. These DDoS attacks overwhelm the victim with huge volume of traffic and render it incapable of performing normal communication or crashes it completely. If there are delays in detecting the flooding attacks, nothing much can be done except to manually disconnect the victim and fix the problem. With the rapid increase of DDoS volume and frequency, the current DDoS detection technologies are challenged to deal with huge attack volume in reasonable and affordable response time. In this paper, we propose HADEC, a Hadoop based Live DDoS Detection framework to tackle efficient analysis of flooding attacks by harnessing MapReduce and HDFS. We implemented a counter-based DDoS detection algorithm for four major flooding attacks (TCP-SYN, HTTP GET, UDP and ICMP) in MapReduce, consisting of map and reduce functions. We deployed a testbed to evaluate the performance of HADEC framework for live DDoS detection. Based on the experiments we showed that HADEC is capable of processing and detecting DDoS attacks in affordable time

    Harnessing Big Data Analytics for Healthcare: A Comprehensive Review of Frameworks, Implications, Applications, and Impacts

    Get PDF
    Big Data Analytics (BDA) has garnered significant attention in both academia and industries, particularly in sectors such as healthcare, owing to the exponential growth of data and advancements in technology. The integration of data from diverse sources and the utilization of advanced analytical techniques has the potential to revolutionize healthcare by improving diagnostic accuracy, enabling personalized medicine, and enhancing patient outcomes. In this paper, we aim to provide a comprehensive literature review on the application of big data analytics in healthcare, focusing on its ecosystem, applications, and data sources. To achieve this, an extensive analysis of scientific studies published between 2013 and 2023 was conducted and overall 180 scientific studies were thoroughly evaluated, establishing a strong foundation for future research and identifying collaboration opportunities in the healthcare domain. The study delves into various application areas of BDA in healthcare, highlights successful implementations, and explores their potential to enhance healthcare outcomes while reducing costs. Additionally, it outlines the challenges and limitations associated with BDA in healthcare, discusses modelling tools and techniques, showcases deployed solutions, and presents the advantages of BDA through various real-world use cases. Furthermore, this study identifies and discusses key open research challenges in the field of big data analytics in healthcare, aiming to push the boundaries and contribute to enhanced healthcare outcomes and decision-making processes

    Towards SDN-based smart contract solution for IoT access control

    Get PDF
    Access control is essential for the IoT environment to ensure that only approved and trusted parties are able to configure devices, access sensor information, and command actuators to execute activities. The IoT ecosystem is subject to various access control complications due to the limited latency between IoT devices and the Internet, low energy requirements of IoT devices, the distributed framework, ad-hoc networks, and an exceptionally large number of heterogeneous IoT devices that need to be managed. The motivation for this proposed work is to resolve the incurring challenges of IoT associated with management and access control security. Each IoT domain implementation has particular features and needs separate access control policies to be considered in order to design a secure solution. This research work aims to resolve the intricacy of policies management, forged policies, dissemination, tracking of access control policies, automation, and central management of IoT nodes and provides a trackable and auditable access control policy management system that prevents forged policy dissemination by applying Software Defined Network (SDN) and blockchain technology in an IoT environment. Integration of SDN and blockchain provides a robust solution for IoT environment security. Recently, smart contracts have become one of blockchain technology’s most promising applications. The integration of smart contracts with blockchain technology provides the capability of designing tamper-proof and independently verifiable policies. In this paper, we propose a novel, scalable solution for implementing immutable, verifiable, adaptive, and automated access control policies for IoT devices together with a successful proof of concept that demonstrates the scalability of the proposed solution. The performance of the proposed solution is evaluated in terms of throughput and resource access delay between the blockchain component and the controller as well as from node to node. The number of nodes in the IoT network and the number of resource access requests were independently and systematically increased during the evaluations. The results illustrate that the resource access delay and throughput were affected neither linearly nor exponentially; hence, the proposed solution shows no significant degradation in performance with an increase in the number of nodes and/or requests

    PenChain: A Blockchain-Based Platform for Penalty-Aware Service Provisioning

    Get PDF
    Service provisioning is of paramount importance as we are now heading towards a world of integrated services giving rise to the next generation of service ecosystems. The huge number of service offerings that will be available to customers in future scenarios require a novel approach to service registry and discovery that allows customers to choose the offerings that best match their preferences. One way to achieve this is to introduce the provider’s reputation, i.e., a quality indicator of the provisioned service, as an additional search criterion. Now, with blockchain technology in our hands, automated regulation of service-level agreements (SLAs) that capture mutual agreements between all involved parties has regained momentum. In this article, we report on our full-fledged work on the conception, design, and construction of a platform for SLA-minded service provisioning called PenChain. With our work, we demonstrate that penalty-aware SLAs of general services–if represented in machine-readable logic and assisted by distributed ledger technology–are programmatically enforceable. We devise algorithms for ranking services in a search result taking into account the digitized values of the SLAs. We offer two scenario-based evaluations of PenChain in the field of precision agriculture and in the domain of automotive manufacturing. Furthermore, we examine the scalability and data security of PenChain for precision agriculture
    corecore